
Acommon phrase used in many soft-
ware presentations during the past

few years is, “We need properly calibrated
and validated models.” This is an assump-
tion that a perfect estimating model will
eliminate the risk in scheduling and man-
aging software projects. Unfortunately, the
calibrated, validated model is only the tip
of the estimating iceberg.

There are four error classes that exist
in any software estimate: estimating tech-
nology (model), environment, project
data, and the estimator. The estimating
technology is centered on the estimating
model or tool. No model is perfect; how-
ever, several widely used models are viable
estimating tools.

The second error class involves the
environment where the software is to be
developed. The environment includes the
development system such as tools and
practices, operating system, physical facil-
ities, organization structure, and manage-
ment. This information, which is general-
ly sketchy when the project acquisition
estimates are made, is detailed and firm at
the time of contract award.

Project data, the third error class, is a
large error source in all estimates. Size is a
fundamental estimating tool parameter
and is usually specified in source lines of
code. Effective size, which defines the
project magnitude, is so difficult to estab-
lish for almost all estimates that alternate
estimate forms such as function points
and objects have become popular size pre-
dictors. No size predicting method is triv-
ial, and none of the methods have proven
accuracy advantages.

The last of the four error classes is the
estimator. The estimator collects the esti-
mate data, establishes the estimating
model input parameters, performs the cost
and schedule analysis, and produces the

final estimate. A realistic estimate requires
that the estimator be proficient with the
estimating tool. Proficiency equates to
training and experience. Training requires
more than access to a User’s Guide, and
experience is not instantaneous.

The estimator and the project data are
the largest error contributors. Technology
is actually the least significant source of
error. Any of the major models or tools in
the hands of an experienced estimator can
produce realistic software development
estimates. The estimating tool is quite
analogous to a scalpel in the hands of a
surgeon.

Calibrated, Validated Tools
Those responsible for producing estimates
typically make four simple assumptions.
First, the estimator is not an accuracy
issue. Second, the project data used to
develop or calibrate the model is of high
quality. Third, the environment is con-
stant and not an issue (“Despite this cost
variation, COCOMO does not include a
factor for management quality, but instead
provides estimates which assume the proj-
ect will be well managed.” [1]). Finally, the
estimating technology (model) is assumed
to be the major error source.

The phrase “properly calibrated and
validated models” does not appear to be
the elixir that eliminates the errors and
risk in scheduling and managing software
projects. Calibrated, validated models are
still necessary for realistic software esti-
mates, just as sharp scalpels are necessary
in good surgery.

The estimating model must fit the
data from which it is defined. This data
must represent the estimating model
application area. Developing a model
from commercial data processing projects
and applying the resulting model to space-

craft control should not be expected to
produce acceptable cost and schedule pre-
dictions.

The major models are capable of esti-
mating a wide range of software projects.
These tools, in general, have been calibrat-
ed (and validated) with considerable proj-
ect data over a long period of time.
Internal environment adjustment factors
account for variations between products
and environments. For example, the num-
ber of environment adjustments in Sage
and SEER-SEM is near 30. It is important
to note these factors have also been vali-
dated. External model calibration changes
the meanings of these factors and negates
the model validation, as we will see later.

One argument against using tradition-
al estimating tools is that traditional mod-
els were all developed in 1970s and 1980s.
Fortunately, the software development
industry has not changed significantly
since then. True, we have much improved
software development approaches and envi-
ronments, but have these environments
improved development productivity?

Defense industry software productivi-
ty, measured from the start of develop-
ment through final qualification test, has
grown almost linearly from 1960 through
the present. A simplified (smoothed) pro-
ductivity growth curve in Figure 1 shows
this growth. The result, smoothed or not,

July 2001 www.stsc.hill.af.mil 13

Software Estimating Model Calibration
Dr. Randall Jensen

Software Engineering, Inc.

The last decade has brought increasing pressure on software model developers to include a calibration capability in
their models that will reduce errors and improve software development estimates. An invalid underlying assumption
is that software estimate errors are primarily due to weaknesses in the estimating technology (models). Data errors
and the impact of estimator capability are never considered to be significant error sources. The intent of this article
is to raise awareness of software estimate errors sources, and to objectively consider the real impacts of model cali-
bration.

lines per
person -
month

Figure 1: Average Software Development
Productivity Growth from 1960 to 1990

Best Practices

shows a growth of software development
productivity less than one source line per
person-month per year during the entire
30-year period. For that period of time,
each new technology has assured us the
productivity problems of the past have
been solved.

The traditional models, in the hands
of experienced estimators still produce
accurate and high-quality cost and sched-
ule projections.

The Calibration Issues
The major calibration issue is what should be
calibrated – the estimating model, the devel-
opment organization, or the estimator. The
industry trend leans toward the technology
solution: the estimating model. The problem
with the technology solution is calibration
changes the model. This change is easily
demonstrated with one of the simpler mod-
els, the Constructive Cost Model (COCO-
MO).

COCOMO vs. REVIC

The COCOMO software-estimating
model was first published in 1981 [2]. The
development effort E, defined by the
embedded software version of the model,
is given by Equation 1,

where the impact of the product and the
development environment is specified by
the product of 16 effort adjustment factors

and the effective development size . A vari-
ation of the COCOMO model, known as
REVIC [3] was introduced a few years
later. REVIC was developed from a collec-
tion of U.S. Air Force project data and
defined development effort by the rela-
tionship shown in Equation 2,

that differs from COCOMO (Equation 1)
only in the proportionality constant. The
REVIC equation is equivalent to

where the calibration factor k1 =1.18. Note

the REVIC definitions of the 16 environ-
ment adjustment factors (EAFs) are iden-
tical to the COCOMO definitions.
REVIC was validated as a new estimating
model using USAF project data. It is

apparent that REVIC is a calibrated
COCOMO model, and the calibration
required that REVIC be revalidated before
use to provide confidence in REVIC’s cost
and schedule estimates. The philosophical
question, “Can any estimating model be
changed and used without revalidation?”
is a major concern. Many software-esti-
mating tools contain calibration constants.
Can these constants be changed from their
default value without requiring model
revalidation?

One serious model impact introduced
by calibration is the redefinition of the
model itself. We can illustrate the effect by
factoring the analyst capability rating
(ACAP) out of the Effort Adjustment
Factor (EAF) product to obtain the equiv-
alent effort relationship shown in
Equation 3,

For example, consider a software develop-
er who uses COCOMO to produce realis-
tic software estimates. The default calibra-
tion constant for COCOMO is 1.0. A
manager notices the ACAP assumes the
development organization to be average
(ACAP = 1.0), which is unacceptable from
a business standpoint.

The organization, according to the
manager, should be considered to be in the
90th percentile category (ACAP = 0.71).
Since the effort projections were realistic
before the change to the ACAP, the cali-
bration factor must be increased to 1.41 to
rebalance the equation. The resulting
effort equation is given by,

Changing the proportionality con-
stant from 2.8 to 3.95 is not the only
change to the estimating model. The ana-
lyst capability definition was changed to
allow average analysts to be rated in the
upper 10 percentile as well. Is the model
defined by the new effort equation equiv-
alent to COCOMO? The models cannot
be considered equivalent because the EAF
definitions and the model definitions are
different. Should the new equation define
a new model that requires validation? Yes.

Calibration Database
The calibration (or validation) project
database is also a major calibration issue.
The database must be of sufficient size to
effectively validate the new or modified
estimating model. Inadequate data leads to
inadequate validation. Yet, the calibration
constant used in many models allows the
validation database to be as small as a sin-
gle project.

The data in the project database must
also represent a common data definition;
that is, defined with the same data rule set.
For example, the task size definition must
be consistent across all the development
tasks in the database. It would be irrational
to define part of the projects in terms of
total size, part as modified size, and part as
effective size.

The development environment for
each task must be defined in the project
database since no two tasks are developed
under identical conditions. Some tasks
may be developed in the Ada program-
ming language, some may have severe tim-
ing constraints, and some may have a
volatile requirements set. This information
is necessary to adjust the environment fac-
tors in the selected model before a valid
estimate can be produced or before the
model can be validated (calibrated).

The U.S. Air Force Space and Missile
Center, with assistance from the Space
Systems Cost Analysis Group, developed a
software project database that contains
more than 2,800 contributed and unveri-
fied data records. The software project
database is the largest and most widely
used source of software project data. Some
of the individual records provide fairly
complete descriptions of each develop-
ment task. This database has been the pri-
mary source of data for model calibration.
Unfortunately, much of the data is incom-
plete, the definitions used by the individ-
ual data points are inconsistent, and the
information necessary to extract effective
size is not included. Thus, only a small
portion of the software project database
data is useful.

Estimator Impact
The most important variation in software
estimates is the training, skill, and experi-
ence of the estimator. The impact of the
estimator on an estimate is almost always

14 CROSSTALK The Journal of Defense Software Engineering July 2001

Best Practices

(2)

(1)

(3)

ignored. Many estimators are not trained
in estimating or in using their tools, which
are assumed to be user-friendly (most are);
the estimator need only to set values for
the model parameters. The estimates are
accepted without sanity checks to ascer-
tain the estimate realism. It is easy to set
model parameters, but sometimes quite
difficult to set those parameters correctly.
A slightly positive bias on all 16 COCO-
MO parameters can significantly change
the resulting cost and schedule estimate.

Experience as an estimator or a soft-
ware developer also has a great impact on
the parameter values inserted into the esti-
mate. Is it possible to understand develop-
ment system volatility without some
knowledge of the software development
process? What is the impact of reuse or
COTS on the effective size of the develop-
ment? These questions demand experience
and skill.

Decalogue Project
The Decalogue Project is the current stage
of an ongoing software model calibration
project that was started and first published

in the early 1990s [4]. The project results
have been published from 1995 through
1999 as Air Force Institute of Technology
master’s theses, and in other publications
such as CrossTalk [5].

The project applies statistical methods
to determine the accuracy of several soft-
ware models. The current project results
are not encouraging; however, the study

results should be expected because of the
underlying assumptions. The four simple
estimate assumptions regarding estima-
tors, data, environment, and estimating
technology are all implicit in the
Decalogue Project. The first indication
that the Decalogue Project had problems
was that none of the estimating models cal-
ibrated in the study had reasonable accu-
racy.

Before condemning the estimating
model performance, the assumptions and
experimental methods of the Decalogue
Project must be understood. The most
critical parameter in an estimate is the task
size. The models use an effective size that
is a weighted combination of new source
code, original (existing) code, and modifi-
cations to the original code. The size data
precision is very important to eliminate
size inaccuracy from the estimate error.

The size data extracted from the soft-
ware project database for the Decalogue
Project was the total size data, not the
effective size data that is used by the mod-
els. As an example of the estimate error
introduced by using total size data, con-
sider a system upgrade of 1,000 source
lines in an existing 100,000-line software
system. The development effort is more
closely related to the 1,000-line upgrade
than to the 100,000 existing lines.
Development productivity is a simple test
of the size data; that is, the ratio of size to
development effort. More than half of the
tested data points in the software project
database yielded a productivity of more

than 1,000 lines per person month. This
productivity is an order of magnitude
greater than that achieved in a typical proj-
ect today.

The development environment was
poorly specified or missing from the soft-
ware project database. To compensate for
the poor environment data, each model
was set to a nominal environment descrip-
tion for the estimates. The nominal envi-
ronment was essentially the model default.

Each software model was assigned to a
graduate student for the analysis. Student
quality is not an issue. However, the stu-
dents had little, if any, specific model
training or estimating experience.

The poor results achieved by the
Decalogue Project demonstrate that poor
calibration (validation) data, coupled with
misused models and inexperienced estima-
tors, lead to invalid estimates.

Conclusion
There are some fallacies related to the cal-
ibration of software estimating models.
The first fallacy is that calibration data is
generally accurate, consistent, and unbi-
ased. Good validation data is carefully ver-
ified to ascertain its completeness, confor-
mance to the database definitions, and
accuracy. Size data in the calibration data-
base must be complete enough to allow
effective size to be extracted from the new,
original, and modified size components.

July 2001 www.stsc.hill.af.mil 15

Software Estimating Model Calibration

Continued on page 18

DOES YOUR SOFTWARE PROJECT RANK AS ONE
OF THE GOVERNMENT'S TOP FIVE?

The Department of Defense and CrossTalk are currently accepting nominations
for the top five software projects in the government.

Outstanding performance of software teams will be recognized and best practices promoted.

Nominations will be acepted through July 20, 2001 at:
www.stsc.hill.af.mil/CrossTalk

Finalists will be selected based on adherence to quality and to the contracted cost, schedule, and requirements.

To be eligible, projects must have been performed under a government contract (internal government contracts also eligible) and been
active during the period of January 2000 through June 2001. To qualify as active, a project must have provided at least one deliverable to
the customer during this time. Example deliverables include, but are not limited to Preliminary Design Reviews, Code Design Reviews,

block updates, documentation, etc.

Effective size, as used in the models, is nec-
essary to predict cost and schedule.
Organizational experience with the soft-
ware also impacts effective size. Since
organizations are not equal and unchang-
ing, environment data is also necessary to
perform estimates. Good validation data is
not readily available.

The second fallacy is that estimates are
independent of estimator training and
experience. That is not likely. One cannot
assume estimates produced by real people
are ever above the significant biases intro-
duced by lack of training, skill, or experi-
ence.

The third fallacy is that properly cali-
brated and validated tools eliminate major
estimate errors; wrong again. Estimating
tools are simply estimating tools. Proper
validation reduces errors inherent in the
tool itself. The model, or tool, is like a
good scalpel. The quality of the estimate
lies primarily in the quality of the user.

On the other hand, what disadvan-
tages does calibration provide?
• Calibration invalidates the model. Model

calibration requires revalidation before
the model can be used with confidence.

• Calibration can destroy the meaning of
the model’s environment parameters.
Unless that is the calibration goal, care
must be taken to ensure the parameter
definitions are intact.

• Calibration cloaks weakness in the esti-
mator. Errors introduced by improperly
using a model can be compensated for
through the calibration process.

• Calibration makes it impossible for esti-
mators using different versions (calibra-
tions) of a model to compare results. This
problem can get very severe when corre-
lating estimates from the acquisition
team and the contractor.

The bottom line is another phrase used
in many software presentations during the
past few years: “We need properly calibrat-
ed and validated models.” Yes, we certainly
need validated tools, but we also need
trained, skilled, and experienced estima-
tors.u

References
1. Boehm, B. W., Software Engineering

Economics, Prentice-Hall, Inc., 1981,
pg. 487.

2. Boehm, B. B., Software Engineering

Economics, Prentice-Hall, Inc., 1981.
3. Kile, R.L., REVIC Software Cost Estimating

Model Users Manual, Ver 9.0, February 9,
1991.

4. Ourada, G. L. and Ferens, D. V.,
Software Cost Estimating Models: A
Calibration, Evaluation, and Compar-
ison, Cost Estimating and Analysis:
Balancing Technology and Declining
Budgets, New York, Springer Verlag,
1992, pp. 83-101.

5. D. V. Ferens and Christensen, D. S., Does
Calibration Improve Predictive Accuracy?
CrossTalk, April 2000, pp. 14-17.

isis

Get Your CROSSTALK

Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:______________________________

RANK/GRADE:______________________

POSITION/TITLE:_____________________

ORGANIZATION:______________________

ADDRESS:___________________________

BASE/CITY:_________________________

STATE:______ ZIP:____________

PHONE: ______________________

FAX:__________________________

E-MAIL: _____________@______________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN 2000____LESSONS LEARNED

FEB 2000____RISK MANAGEMENT

APR 2000____COST ESTIMATION

MAY 2000____THE F-22

JUN 2000____PSP & TSP

NOV 2000____SOFTWARE ACQUISITION

DEC 2000____PROJECTMANAGEMENT

JAN 2001____MODELING AND SIMULATION

APR 2001____WEB-BASED APPS

MAY 2001____SOFTWARE ODYSSEY

18 CROSSTALK The Journal of Defense Software Engineering July 2001

Best Practices

Continued from page 15

About the Author
RRaannddaallll WW.. JJeennsseenn,
Ph.D., is president of
Software Engineering,
Inc., and specializes in
software project resource
management. Dr. Jensen

developed the model that underlies the
Sage and the GAI SEER-SEM software
cost and schedule estimating systems. He
received the International Society of
Parametric Analysts Freiman Award for
Outstanding Contributions to
Parametric Estimating in 1984. Dr.
Jensen has published several textbooks,
including Software Engineering, and
numerous software and hardware analysis
papers. He has bachelor’s, master’s and
doctorate’s degrees in electrical engineer-
ing from Utah State University.

Software Engineering, Inc.
660 North Highland Blvd.
Brigham City, UT 84302
Phone: (435) 734-2585
Fax: (435) 734-2586
E-mail: seisage@aol.com
www.seisage.com

“ As soon as we started
programming, we found to

our surprise that it wasn’t as
easy to get programs right as
we had thought. Debugging
had to be discovered. I can
remember the exact instant
when I realized that a large
part of my life from then on

was going to be spent in
finding mistakes in my

own programs.”
–Maurice Wilkes

